Генератор высокой частоты – враг электросчетчиков. Аналоговый функциональный генератор Низкочастотный генератор частотомер своими руками
Схема низкочастотного генератора.
Низкочастотный генератор является одним из необходимейших приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов (измерительных мостов, модуляторов и др.).
Принципиальная схема генератора показана на рисунке 1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и выходного делителя на резисторах R6, R12, R13, R14.
Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи (С1-СЗ, R3, R4, R5, С4-С6) выполненной по схеме моста Винна, переведен в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причем, R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискаженный синусоидальный сигнал наибольшей амплитуды.
Лампа накаливания Н1 включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока (лампа Н1 выполняет функции терморезистора, увеличивая свое сопротивление от нагрева, вызванного протекающим током).
Частота устанавливается двумя органами управления, - переключателем S1 выбирают один из трех поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому, применение самодельных сдвоенных резисторов (сделанных из двух одиночных) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала.
На оси переменного резистора закреплена ручка со стрелкой (как у галетных приборных переключателей) и простая шкала для установки частоты. Для точной установки частоты лучше всего использовать цифровой частотомер.
Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на выход. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14.
Максимальное выходное напряжение НЧ генератора, - 1,0V.
Контролировать величину выходного напряжение удобнее всего по низкочастотному милливольтметру, делая поправку на значение аттенюатора на резисторах R12-R14.
Выключают генератор тумблером на два направления S2, отключающим генератор от источника двуполярного напряжения ±10V.
Большинство деталей расположено на печатной плате. Все регуляторы-резисторы, переключатели и разъемы расположены на передней панели. Многие детали смонтированы на их выводах.
Переключатель S1 галет-ный на три направления и три положения. Используются только два направления. Выключатель S2 -тумблер на два направления. Все разъемы - коаксиальные разъемы типа «Азия» от видеотехники. Дроссели L1 и L2 - от модулей цветности старых телевизоров УСЦТ (можно использовать любые дроссели индуктивностью не менее 30 мкГн). Лампа накаливания Н1 - индикаторная, с гибкими проволочными выводами (похожа на светодиод), на напряжение 6,3V и то 20 тА. Можно использовать и другую лампу на напряжение 2,5-13,5V и ток не более 0,1 А.
Налаживать генератор желательно используя частотомер и осциллограф. В этом случае, подстройкой резистора R1 добиваются максимального и неискаженного переменного синусоидального напряжения на выходе генератора, во всем диапазоне частот (это, обычно, соответствует величине выходного переменного напряжения 1V). Затем, более точным подбором R4 и R3 (эти сопротивления должны быть одинаковы) устанавливают диапазоны перестройки частоты. Если используются недостаточно точные конденсаторы С1-С6 может понадобиться их подбор или включение параллельно им «достроечных» конденсаторов.
Иванов А.
Литература:
1. Овечкин М. Низкочастотный измерительный комплекс, ж. Радио №4, 1980.
Радиоконструктор 08-2016
Скачать: Низкочастотный генератор для радиолюбительской лаборатории
В случае обнаружения "битых" ссылок -
Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.
Делаем несложный функциональный генератор своими руками.
Каждый радиолюбитель, который изготавливает или повторяет радиоэлектронные устройства, рано или поздно сталкивается с необходимостью настройки и наладки собранных изделий.
В свою очередь, процесс настройки предполагает наличие соответствующих измерительных приборов. В наше время, безусловно, можно приобрести измерительные приборы промышленного изготовления, благо сейчас приборы стали широкодоступны.
Но, несложные приборы можно изготовить самостоятельно.
Вашему вниманию предлагается описание несложного функционального генератора, изготовленного мною много лет тому назад, который до сих пор находится в отличном работоспособном состоянии.
Функциональный генератор, это генератор колебаний, работающий в низкочастотном диапазоне (1Гц-100 кГц) и формирующий на выходе сигналы синусоидальной, прямоугольной и треугольной формы. Описание этого функционального генератора было опубликовано в журнале Радио №6 за 1992 год.
Данный генератор значительно упрощает ремонт узлов и устройств низкочастотной аппаратуры. Внешний вид изготовленного мною функционального генератора.
На переднюю панель выведены:
Переключатель диапазонов генератора;
Переключатель режима работы генератора;
Ручка установки частоты генерируемых колебаний;
Регулятор уровня выходного напряжения;
Выключатель питания;
Гнездо выхода;
Предлагаемый функциональный генератор имеет следующие технические характеристики:
— диапазон генерируемых частот 1 Гц-100 кГц, разделен на пять поддиапазонов:
1) 1 Гц-10 Гц;
2) 10 Гц-100 Гц;
3) 100 Гц-1 кГц;
4) 1 кГц-10 кГц;
5) 10 кГц-100 кГц;
— максимальный размах сигналов прямоугольный формы -10 В;
— максимальный размах сигналов треугольной формы -6 В;
— максимальный размах сигналов синусоидальной формы -3,3 В;
Краткое описание схемы функционального генератора.
Принципиальная схема функционального генератора представлена ниже:
Задающий генератор собран на элементах DD1.1, DD1.2, DD1.3. На выходе элемента DD1.1 формируются треугольные импульсы. Прямоугольные импульсы формируются узлом на элементах DD1.2, DD1.3.
Преобразователь сигналов треугольной формы в синусоидальную собран на элементах VD1-VD6 и R10-R12.
Данный генератор обеспечивает получение «белого шума», источником которого является стабилитрон VD9. Напряжение «белого шума» усиливается до уровня 5В усилителем на элементе DD1.4.
Частота генерируемых колебаний устанавливается переменным резистором R3.
Для контроля частоты генерируемых функциональным генератором колебаний мною был применен частотомер, описание которого опубликовано в брошюре «В помощь радиолюбителю» №99. Схема частотомера была немного доработана: добавлен еще один разряд индикации и заменены люминесцентные индикаторы типа ИВ-3 на светодиодные типа АЛС314А. Частотомер размещен в одном корпусе с функциональным генератором.
Принципиальная схема частотомера, с учетом вышеизложенных доработок приведена ниже:
Конечно же, в наши дни «городить» такой частотомер нет никакой необходимости. Все гораздо проще и компактнее получается на микроконтроллерах. Схема предоставлена в ознакомительных целях.
Настало время проверить работоспособность генератора.
Форму и размах колебаний проверяем при помощи осциллографа.
Синусоидальные колебания
. Синусоида чистая, частота около 1000 Гц. Параметры каналов вертикального и горизонтального отклонения указаны на фото.
Треугольные колебания
также имеют правильную форму:
Прямоугольные колебания
выглядят не менее достойно. Меандр ровный и четкий, без выбросов, с крутыми фронтами.
Реальные технические характеристики функционального генератора практически соответствуют заявленным в авторской статье.
Небольшое видео, демонстрирующее работу цифровой шкалы функционального генератора:
Наглядно видно, как происходит подсчет количества импульсов.
В данной статье описывается простой генератор звуковых частот, проще говоря - пищалка. Схема простая и состоит всего из 5 элементов, если не считать батарейку и кнопку.
Описание схемы:
R1 задает смещение на базу VT1. А с помощью C1 осуществляется обратная связь. Динамик является нагрузкой VT2.
Сборка:
Итак, нам понадобится:
1) Комплементарная пара из 2х транзисторов, то есть один NPN и один PNP. Подойдут практически любые маломощные, например КТ315 и КТ361 . Я использовал то, что было под рукой - BC33740 и BC32740.
2) Конденсатор 10-100нФ, я использовал 47нФ (маркировка 473).
3) Подстроечный резистор около 100-200 кОм
4) Любой маломощный динамик. Можно использовать наушники.
5) Батарейка. Можно практически любую. Пальчиковую, или крону, разница будет только в частоте генерации и мощности.
6) Небольшой кусок фольгированного стеклотекстолита, если планируется делать все на плате.
7) Кнопка или тумблер. Мной была использована кнопка из китайской лазерной указки.
Итак. Все детали собраны. Приступаем к изготовлению платы. Я сделал простенькую плату поверхностного монтажа механическим путем (то есть при помощи резака).
Итак, все готово к сборке.
Сначала монтируем основные компоненты.
Потом впаиваем провода питания, батарейку с кнопкой и динамик.
На видео показана работа схемы от 1.5В батарейки. Подстроечный резистор меняет частоту генерации
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
VT1 | Биполярный транзистор | КТ315Б | 1 | В блокнот | ||
VT2 | Биполярный транзистор | КТ361Б | 1 | В блокнот | ||
C1 | Конденсатор | 10-100нФ | 1 | В блокнот | ||
R1 | Резистор | 1-200 кОм | 1 |
Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “
Собираем генератор сигналов – функциональный генератор. Часть 1.
На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.
Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .
Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.
Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.
Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя
Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:
А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:
(151.5 KiB, 6,056 hits)
(130.7 KiB, 3,486 hits)
Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):
Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.
Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.
Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат – SPRINT LAYOUT .
Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.
Низких частот предназначены для получения на выходе устройства периодических низкочастотных электрических сигналов с заданными параметрами (форма, амплитуда, частота сигнала).
КР1446УД1 (рис. 35.1) представляет собой сдвоенный гай- to-rail ОУ общего назначения. На основе этой микросхемы могут быть созданы устройства разнообразного назначения, в частности, электрических колебаний, которых приведены на рис. 35.2-35.4 . (рис. 35.2):
♦ одновременно и синхронно вырабатывает импульсы напряжения прямоугольной и пилообразной формы;
♦ имеет единую для обоих ОУ искусственную среднюю точку, образованную делителем напряжения R1 и R2 .
На первом из ОУ построен , на втором - Шмитта с широкой петлей гистерезиса (U raCT =U nHT ;R3/R5), точными и стабильными порогами переключения. Частота генерации определяется по формуле:
f =———– и составляет для указанных на схеме номиналах 265 Ги. С
Рис. 35.7. Цоколевка и состав микросхемы КР 7446УД7
Рис. 35.2. генератора прямоугольных- треугольных импульсов на микросхеме КР1446УД 7
изменением напряжения питания от 2,5 до 7 В эта частота изменяется не более чем на 1 %.
Усовершенствованный (рис. 35.3) вырабатывает импульсы прямоугольной формы, причем их частота от величины управляющего
Рис. 35.3. управляемого генератора прямоугольных импульсов
входного напряжения по закону
При изменении
входного напряжения от 0,1 до 3 В частота генерации линейно возрастает от 0,2 до 6 кГц .
Частота генерации генератора прямоугольных импульсов на микросхеме КР1446УД5 (рис. 35.4) линейно от величины приложенного управляющего напряжения и при R6=R7 определяется как:
5 В частота генерации линейно возрастает от 0 до 3700 Гц .
Рис. 35.4. генератора, управляемого напряжением
Так, при изменении входного напряжения от 0,1 до
На основе микросхем TDA7233D, используя в качестве единой основы базовый элемент, рис. 35.5, а, можно собрать достаточно мощные импульсов (), а также напряжения, рис. 35.5 .
Генератора (рис. 35.5, 6, верхняя) работает на частоте 1 кГц, которая определяется подбором элементов Rl, R2, Cl, С2. Емкость переходного конденсатора С задает тембр и громкость сигнала.
Генератора (рис. 35.5, б, нижняя), вырабатывает двухтональный сигал при условии индивидуального подбора емкости конденсатора С1 в каждом из использованных базовых элементов, например, 1000 и 1500 пФ.
Напряжения (рис. 35.5, в) работают на частоте около 13 кГц (емкость конденсатора С1 снижена до 100 пФ):
♦ верхний - вырабатывает отрищ гельное относительно общей шины напряжение;
♦ средний - вырабатывает удвоенное относительно напряжения питания положительное;
♦ нижний - вырабатывает в зависимости от коэффициента трансформации разнополярное равновеликое напряжение с гальванической (при необходимости) развязкой от источника питания.
Рис. 35.5. нештатного применения микросхем TDA7233D: а – базовый элемент; б - в качестве генераторов импульсов; в - в качестве преобразователей напряжения
При сборке преобразователей следует учитывать, что на диодах выпрямителей теряется заметная часть выходного напряжения. В этой связи в качестве VD1, VD2 рекомендуется использовать Шоттки. Ток нагрузки бестрансформаторных преобразователей может достигать 100-150 мА.
Прямоугольных импульсов (рис. 35.6) работает в диапазонах частот 60-600 Гц\ 0,06-6 кГц; 0,6-60 кГц . Для коррекции формы генерируемых сигналов может быть использована цепочка (нижняя часть рис. 35.6), подключаемая к точкам А и В устройства.
Охватив ОУ положительной обратной связью, нетрудно перевести устройство в режим генерации прямоугольных импульсов (рис. 35.7).
Импульсов с плавной перестройкой частоты (рис. 35.8) может быть выполнен на основе микросхемы DA1 . При использовании в качестве DA1 1/4 микросхемы LM339 регулировкой потенциометра R3 рабочая частота перестраивается в пределах 740- 2700 Гц (номинал емкости С1 в первоисточнике не указан). Исходная частота генерации определяется произведением C1R6.
Рис. 35.8. широкодиапазонного перестраиваемого генератора на основе компаратора
Рис. 35.7. генератора прямоугольных импульсов на частоту 200 Гц
Рис. 35.6. НЧ-генератора прямоугольных импульсов
На основе компараторов типа LM139, LM193 и им подобных могут быть собраны:
♦ прямоугольных импульсов с кварцевой стабилизацией (рис. 35.9);
♦ импульсов с электронной перестройкой .
Стабильных по частоте колебаний или так называемый «часовой» прямоугольных импульсов может быть выполнен на компараторе DAI LTC1441 (или ему подобном) по типовой схеме, представленной на рис. 35.10. Частота генерации задается кварцевым резонатором Ζ1 и составляет 32768 Гц. При использовании линейки делителей частоты на 2 на выходе делителей получают прямоугольные импульсы частотой 1 Гц. В небольших пределах рабочую частоту генератора можно понижать, подключая параллельно резонатору небольшой емкости.
Обычно в радиоэлектронных устройствах используют LC и RC- . Менее известны LR- , хотя на их основе могут быть созданы устройства с индуктивными датчиками,
Рис. 35.11. LR-генератора
Рис. 35.9. генератора импульсов на компараторе LM 7 93
Рис. 35.10. «часового» генератора импульсов
Обнаружители электропроводки, импульсов и т. д.
На рис. 35.11 приведена простого LR-геиератора прямоугольных импульсов, работающего в диапазоне частот 100 Гц - 10 кГц . В качестве индуктивности и для звукового
контроля работы генератора используется телефонный капсюль ТК-67. Перестройка частоты осуществляется потенциометром R3.
Работоспособен при изменении напряжения питания от 3 до 12,6 В. При понижении напряжения питания с 6 до 3-2,5 В верхняя частота генерации повышается с 10-11 кГц до 30-60 кГц.
Примечание.
Диапазон генерируемых частот может быть расширен до 7-1,3 МГц (для микросхемы ) при замене телефонного капсюля и резистора R5 на катушку индуктивности. В этом случае при отключении диодного ограничителя на выходе устройства можно получить сигналы, близкие к синусоиде. Стабильность частоты генерации устройства сопоставима со стабильностью RC-генераторов.
Звуковых сигналов (рис. 35.12) могут быть выполнены К538УНЗ . Для этого достаточно вход и выход микросхемы соединить конденсатором или его аналогом - пьезокерамическим капсюлем. В последнем случае капсюль выполняет также роль звукоизлучагеля.
Частоту генерации можно менять, подбирая емкость конденсатора. Параллельно или последовательно пьезокерамическому капсюлю для подбора оптимальной частоты генерации можно включить . Напряжение питания генераторов 6-9 В.
Рис. 35.72. звуковых частот на микросхеме
Для экспресс-проверки ОУ может быть использована генератора звуковых сигналов, представленная на рис. 35.13 . Тестируемую микросхему DA1 типа , у или иных, имеющих аналогичную цоколевку, вставляют в панельку, после чего включают питание. В случае, если исправна, пьезокерамический капсюль НА1 излучает звуковой сигнал.
Рис. 35.13. звукового генератора - испытателя ОУ
Рис. 35.14. генератора прямоугольных импульсов на ОУКР1438УН2
Рис. 35.15. генератора синусоидальных сигналов на ОУКР1438УН2
Сигналов прямоугольной формы на частоту 1 кГц, выполненный на микросхеме КР1438УН2, показан на рис. 35.14 . стабилизированных по амплитуде синусоидальных сигналов на частоту 1 кГц приведен на рис. 35.15 .
Генератора , вырабатывающего сигналы синусоидальной формы, представлена на рис. 35.16. Этот работает в диапазоне частот 1600-5800 Гц, хотя при частотах свыше 3 кГц форма сигнала все более отдаляется от идеала, а амплитуда выходного сигнала падает на 40 %. При десятикратном увеличении емкостей конденсаторов С1 и С2 полоса перестройки генератора с сохранением синусоидальной формы сигнала понижается до 170-640 Гц при неравномерности амплитуды до 10 %.
Рис. 35.7 7. генератора синусоидальных колебаний на частоту 400 Гц