Датчики влажности - как устроены и работают. Датчик влажности для вентиляции Несколько важных моментов
Многие современные импортные стиральные машины оборудованы сигнализаторами подтекания воды из них. Устаревшие или более дешевые модели стиральных машин такой сервисной функции не имеют. К сожалению, некоторые их владельцы уже на собственном опыте знают, что такое "потоп" и "сколько это будет стоить". Чтобы не испытать это чувство, можно заранее воспользоваться материалами статьи.
Схема простейшего сигнализатора повышения влажности приведена на рис. 1. Она контролирует состояние датчика влажности (сенсора), который подключается к контактам К1 "SENSOR". Конструкция датчика может быть самой различной.
Все зависит от возможностей его изготовителя. В простейшем случае достаточно воспользоваться "печатной" платой, на которой имеются два проводника, расположенные на удалении 0,5...1,5 мм друг от друга. Для повышения эффективности работы такого датчика при минимальных его размерах можно сделать проводники в виде спирали. Это позволит увеличить "зону взаимодействия" проводников без значительного увеличения габаритов датчика.
На микросхеме интегрального таймера IC1 типа NE555 выполнен моностабильный генератор импульсов. Собственная частота генератора определяется номиналами резисторов R1, R2 и конденсатора С1.
К выходу схемы (КЗ "OUT- REPRO") подключается любой электромагнитный или динамический излучатель. Для исключения перегрузки микросхемы по выходу необходимо, чтобы его сопротивление при напряжении питания микросхемы 9 В было более 50 Ом. Можно воспользоваться и малогабаритным пьезоизлучателем. При этом его надо будет зашунтировать резистором сопротивлением 2...20 кОм. В качестве конденсатора С2 при этом достаточно будет использовать неполярный керамический конденсатор емкостью до 0,22...0,68 мкФ или вообще заменить конденсатор С2 ... перемычкой. Смелее экспериментируйте!
При сухом датчике влажности транзистор Т1 будет в непроводящем состоянии, напряжение питания на микросхему IC1 не подается и она обесточена. Если влажность в месте расположения датчика "SENSOR" повысится, то транзистор Т1 получит смещение базового перехода и отопрется. Микросхема IC1 получит питание и начнет генерировать электрические сигналы звукового диапазона частот. "Зазвучит" излучатель, сигнализируя о протечке воды в месте установки датчика.
Для повышения чувствительности работы схемы целесообразно в качестве Т1 использовать транзисторы с большим коэффициентом усиления, например, ВС549С или отечественные КТ3102Е.
Схема рис. 1 очень простая и типовая. Казалось бы, что в ней еще усовершенствовать? Действительно, начинающие радиолюбители могут повторять ее. Собственно, на них она и была рассчитана. Более любознательные читатели могут задаться вопросом рациональности предлагаемого в схеме рис. 1 способа включения/выключения генерации микросхемы электронного таймера серии 555. Из алгоритма работы этих микросхем известно, что в зависимости от напряжения на выводе 4 таймер может находиться в рабочем или пассивном (заторможенном) состоянии. Так, если на вывод 4 подано напряжение менее 0,4 В, то на выходе таймера (независимо от сигналов на других его входах) устанавливается напряжение низкого уровня. Этот режим называется пассивным.
Если напряжение на выводе 4 превышает 1 В, то цепь блокировки работы таймера автоматически выключается и не влияет на последующую работу таймера. Это активный режим. Микросхема может работать как моностабильный генератор в данном случае. Ток управления микросхемой по выводу 4 очень мал и не превышает 0,2 мА. Это позволяет изменить схему управления ее работой. Дело в том, что с повышением влажности в области датчика "SENSOR" сопротивление самого датчика меняется не скачкообразно, а постепенно. Примерно так же постепенно будет уменьшаться и сопротивление перехода эмиттер-коллектор транзистора Т1. Возрастает напряжение питания микросхемы IC1. Примерно при 3...4 В она начинает генерировать, но громкость звука в громкоговорителе "REPRO" будет очень слабой. По мере повышения влажности в зоне датчика громкость возрастает.
Целесообразнее постараться придать сигнализатору влажности релейные свойства - сигнал тревоги должен быть достаточно сильным уже при минимально допустимом уровне контролируемого параметра (влажности). Для этого, вероятно, достаточно вывод 8 (+Vcc) микросхемы IC1 и резистор R1 подключить непосредственно к выходу выключателя питания S1. Вывод 4 этой микросхемы соединяют с эмиттером транзистора Т1 и дополнительным резистором R3. Второй конец этого резистора должен быть соединен с минусом питания микросхемы - рис. 2.
Как и ранее, пока датчик влажности сух, транзистор Т1 находится в непроводящем состоянии. Тока эмиттера транзистора и падения напряжения на резисторе R3 нет. Таймер "заторможен" по выводу 4.
При повышении влажности транзистор Т1 отпирается, ток эмиттера(коллектора)создает падение напряжения на резисторе R3. Как только на этом резисторе будет более 0,4...1 В, таймер разблокируется и начинает генерировать импульсы. Релейный режим управления работой генератора НЧ при линейном изменении сопротивления датчика влажности достигнут.
В заключение хотелось бы высказать предположения в выборе типа транзистора Т1 и номинала резистора R3. Поскольку ток таймера 555 по выводу 4 может быть очень мал (менее 0,5 мА), то зададимся током коллектора этого транзистора, например, 2 мА. Значит, при напряжении питания схемы 9 В сопротивление R3 может быть 4,3 кОм.
Получение столь небольшого тока через транзистор Т1, вероятно, возможно и при не столь уж и большом коэффициенте его усиления. А это допускает применение в качестве Т1 любых типов маломощных транзисторов без их подбора. Возможно, целесообразно выполнить эмиттерную нагрузку транзистора Т1 в виде цепочки из двух резисторов (R3 и R4) - рис. 3. Это дополнительно облегчит настройку схемы.
Литература:
1.
Poplachove cidlo vlhoctf // Amaterske RADIO. 2009. №12. S.3.
2.
B.H. Вениаминов, O.H. Лебедев, А.И. Мирошниченко. Микросхемы и их применение // М.: Издательство "Радио и связь". 1989. С.81 -82.
Аварии с домашним водопроводом часто происходят не внезапно. Сначала начнет подтекать, потом капать, а потом может и прорвать. А еще могут и соседи сверху начать заливать. И лучше узнать об этом пораньше, а не когда тебя разбудит дождь с потолка. Для собственного спокойствия решил я подстраховаться и сделать звуковой сигнализатор влажности. Теперь такая игрушка стоит у меня у каждой батареи, под каждой раковиной и других водоопасных местах. Этот бдительный страж предупредит об опасности воем милицейской сирены. Так же приборчик можно использовать для сигнализации о завышенной влажности в помещении, или образовании конденсата.
Технические характеристики:
Напряжение питания - 12 вольт.
Ток потребления в покое - нет.
Ток потребления в режиме работы - 20 мА.
Детали:
D1- К561ЛА7- 1 шт. Аналог- CD4011A.
T1, T2- КП505- 2 шт. Любой n-канальный МОП транзистор с напряжением затвора не выше 3 вольт.
С1- 0,1 мкф. Керамика.
С2, С3- 22 нф. Керамика.
R2- 1 ком- 1 шт. Резистор 0125W.
R4- 3,3 ком- 1 шт. Резистор 0125W.
R6- 47 ком- 1 шт. Резистор 0125W.
R1- 68 ком- 1 шт. Резистор 0125W.
R3- 100 ком- 1 шт. Резистор 0125W.
R5- 220 ком- 1 шт. Резистор 0125W.
ЗП-18- 1 шт. Любой пьезокерамический излучатель.
S1- Любой выключатель.
Bat 12 V- Пальчиковая батарейка от брелка сигнализации.
Описание работы:
При повышении влажности сопротивление датчика уменьшается, открывается транзистор Т2. Включаются оба генератора микросхемы D1. Генератор на элементах D1-3 и D1-4 работает на частоте, примерно 1 герц, генератор на элементах D1-1 и D1-2 на частоте вашего излучателя (нужно подстроить для максимальной громкости, в моем случае порядка трех килогерц). Транзистор Т1 с частотой 1 герц подключает и отключает емкость С3 подключенную параллельно емкости С2, из-за этого меняется тональность второго генератора и получается имитация звука сирены.
Настройка:
При правильной сборке устройство в настройке не нуждается.
Для снижения чувствительности прибора нужно уменьшить резистор R5, для повышения чувствительности увеличить.
При данных элементах сигнализатор срабатывает от касания рукой.
Для увеличения громкости можно подобрать частоту с помощью С2 и С3 под ваш резонатор.
В роли датчика влажности можно использовать любые два проводника расположенные близко друг к другу. Я нарезал на фольгированном текстолите несколько рядом лежащих дорожек.
Деталей и соединений не много, потэому печатную плату решил не делать.
По цене трудно что-то сказать, все детали были под рукой. Самый дорогой элемент это батарейка - 30 рублей.
Если надолго забыть о поставленной на горячую плиту посуде с водой, выпарившиеся несколько литров воды и испорченная посуда вас не обрадуют. Чтобы такого не случалось, можно собрать несложное устройство, которое, будучи размещённым, например, на кухне, известит звуковыми сигналами о высокой влажности в помещении.
Схема сигнализатора повышенной влажности воздуха представлена на рис. 1. По совместительству он может подать сигнал и об образовавшейся на полу луже, что уменьшит неприятности в случае повреждения водопроводного либо отопительного оборудования или переполнения раковины при оставленном на длительное время открытом кране и засорившемся сливном отверстии.
Рис. 1. Схема сигнализатора повышенной влажности воздуха
В качестве чувствительного элемента в сигнализаторе применён газорезистор B1. Такие использовались в кассетных видеомагнитофонах и видеокамерах для блокировки работы лентопротяжного механизма при высокой влажности воздуха внутри корпуса аппарата. Логические элементы DD1.1 и DD1.2 образуют генератор импульсов, следующих примерно 15 раз в минуту. Эта частота задана резисторами R13, R15, R16 и конденсатором C9. Благодаря диоду VD7 импульсы значительно (приблизительно в 10 раз) короче пауз между ними.
Когда газорезистор сухой, его сопротивление не превышает 1...3 кОм и напряжения в точке соединения резисторов R4, R5, R7 недостаточно для открывания транзистора VT1. Закрыт и транзистор VT2. Логический уровень напряжения на нижнем (по схеме) входе элемента DD1.1 - низкий, чем запрещена работа генератора импульсов на элементах DD1.1 и DD1.2, причём на выходе элемента DD1.2 установлен низкий уровень, в свою очередь запрещающий работу генератора импульсов звуковой частоты на элементах DD1.3 и DD1.4.
Если влажность окружающего газорезистор воздуха повысится (для проверки достаточно сделать с расстояния 5...10 см два-три выдоха на газорезистор), то сопротивление газорезистора возрастёт до 10...20 МОм. Увеличившимся напряжением на базе транзистор VT1 будет открыт, вместе с ним откроется и транзистор VT2. На нижнем (по схеме) входе элемента DD1.1 будет установлен высокий логический уровень напряжения. Оба генератора импульсов заработают. Пьезоизлучатель звука HA1 станет каждые 4 с подавать звуковые сигналы длительностью около 0,5 с.
Обратная связь через резистор R7 ускоряет открывание и закрывание транзисторов VT1, VT2 и создаёт небольшой гистерезис в характеристике их переключения. Это обеспечивает чёткое без "дребезга" срабатывание сигнализатора при медленном приближении влажности к пороговой. Порог срабатывания устанавливают подстро-ечным резистором R3.
Устройство подаст сигнал и в том случае, если транзистор VT1 останется закрытым, а транзистор VT2 откроется в результате замыкания пролитой водой контактов E1 и E2. Резисторы R6 и R8 не только ограничивают базовый ток транзистора VT2, но и уменьшают опасность поражения электрическим током человека, прикоснувшегося к контактам. Сетевое напряжение может попасть на них в результате проникновения воды внутрь сигнализатора или нарушения изоляции между обмотками трансформатора T1.
Чтобы сигнализатор не досаждал звуковыми сигналами, пока устраняются причины его срабатывания, нажатием на кнопку SB1 можно заблокировать работу генераторов приблизительно на 18 мин. Столько времени конденсатор С8, разряженный нажатием на кнопку, будет заряжаться через резистор R17. Резистор R22 ограничивает разрядный ток конденсатора, предохраняя контакты кнопки от обгорания. Следует отметить, что восстановление низкого сопротивления газорезистора B1 по окончании воздействия высокой влажности происходит очень медленно. Поэтому, чтобы избавиться от назойливых сигналов, может потребоваться нажимать на кнопку SB1 несколько раз.
Пьезоизлучатель звука HA1 подключён к выходам элементов DD1.3, DD1.4 через эмиттерные повторители на транзисторах VT5, VT6 и VT7, VT8. Это увеличивает нагрузочную способность генератора и даёт возможность подключить к нему несколько излучателей звука параллельно, разместив их, например, в разных помещениях.
Светодиод HL1 сигнализирует о включении сигнализатора в сеть, а светодиод HL2 включается в моменты подачи звуковых сигналов, а также при заблокированной низким уровнем напряжения на конденсаторе C8 работе генераторов. Конденсаторы C1 и C2 предотвращают ложные срабатывания сигнализатора, вызванные помехами.
Напряжение сети 220 В поступает на первичную обмотку понижающего трансформатора T1 через защитные резисторы R1 и R2. Варистор RU1 защищает трансформатор от всплесков напряжения сети. Напряжение около 17 В с вторичной обмотки трансформатора выпрямляет диодный мост VD2-VD5. Все узлы стабилизатора питаются напряжением +9,2 В, получаемым из выпрямленного с помощью стабилизатора на транзисторах VT3 и VT4. Его значение зависит от напряжения стабилизации стабилитрона VD6.
Поскольку в качестве T1 в конструкции применён маломощный понижающий трансформатор от копировального аппарата "Xerox", рассчитанный на ток нагрузки около 10 мА, ток через стабилитрон выбран очень маленьким - менее 1 мА. Небольшая мощность трансформатора определила и выбор характера звукового сигнала - короткий тональный импульс и длинная пауза.
Можно использовать и более мощный трансформатор, например ТПК-2-12В, рассчитанный на ток нагрузки до 0,21 А. Для самостоятельного изготовления трансформатора подойдёт Ш-образный магнитопровод с площадью сечения центрального стержня 2 см 2 . Первичная обмотка должна состоять из 5900 витков обмоточного провода диаметром 0,06 мм. Вторичную обмотку, содержащую 500 витков, наматывают проводом диаметром около 0,2 мм. Пластины магнитопровода собирают вперекрышку. Готовый трансформатор можно покрыть эпоксидным компаундом.
Большинство деталей устройства размещены на монтажной плате размерами 75x45 мм, изображённой на рис. 2. На небольших отдельных платах смонтированы резисторы R6, R8 и резисторы R1, R2 c варистором RU1.
Рис. 2. Размещение деталей устройства на монтажной плате размерами 75x45 мм
Использована также готовая плата от сетевого адаптера, на которой установлены диоды VD2-VD5 и конденсатор C3. Все эти платы после изготовления покрыты со стороны монтажа влагозащитным лаком, например ХВ-784. Вместе с трансформатором T1 они размещены в пластмассовом корпусе размерами 160x110x32 мм от приёмника охранной сигнализации RR-701R.
Газорезистор B1, извлечённый из видеомагнитофона Funai, закреплён на массивной металлической пластине и вместе с ней помещён в пластмассовый корпус размерами 46x42x15 мм (рис. 3) с отверстиями для доступа воздуха. Чувствительность его значительно выше, чем у отечественного газорезистора ГЗР-2Б, применённого в конструкции, описанной в статье "Светозвуковой сигнализатор выкипания воды" ("Радио", 2004, № 12, с. 42, 43). Тем не менее ГЗР-2Б и другие аналогичные газорезисторы могут работать и в описываемом сигнализаторе.
Рис. 3. Газорезистор B1 на металлической пластине
В устройстве могут быть применены постоянные резисторы любого типа (МЛТ, С1-4, С1-14, С2-23). Желательно, чтобы резисторы R1 и R2 были невозгораемыми. Подстроечный резистор R3 - миниатюрный в корпусе, защищающем его от внешних воздействий. Крайне нежелательно использовать подстроечные резисторы открытого исполнения (например, СП3-38) из-за их низкой надёжности. Варистор RU1 - HEL14D471K или другой дисковый с классификационным напряжением 470 В.
Оксидные конденсаторы - К50-68, К53-19, К53-30 и их импортные аналоги. Конденсатор C8 должен быть с малым током утечки. Экземпляр, использованный автором, имеет ток утечки менее 10 нА при напряжении 18 В. Остальные конденсаторы - керамические К10-17, К10-50, КМ-5 или их аналоги. Конденсатор C4 должен быть рассчитан на напряжение не ниже 35 В.
Вместо диодов 1 N4002 подойдут любые из 1N4001- 1 N4007, UF4001 -UF4007, а также серий КД208, КД209, КД243. Диоды 1N4148 можно заменить на 1SS244, 1N914, КД510А, КД521А, КД521Б, КД522А, КД522Б. Стабилитрон BZV55C-10 заменяется на TZMC-10, КС210Ц, КС210Ц1, 2С210К1, 2С210К, 2С210Ц, транзисторы 2SC1685 и 2SC2058 - на 2SC1815, 2SC1845, SS9014, а также серий КТ3102, КТ6111, а транзистор 2SA1015 - на SS9012, SS9015, 2SA733 или серий КТ3107, КТ6112. Замена транзисторов 2SC2331 - 2SC2383, SS8050, BD136, BD138, КТ646А, КТ683А. Вместо транзисторов 2SA1273 и 2SA1270 пригодны SS8550, 2SB564, BD231, КТ639А, КТ644А, КТ684А. Следует иметь в виду, что предлагаемые в качестве замены транзисторы могут иметь отличия в типе корпуса и расположении выводов.
Микросхему К561ЛА7 заменят отечественные КР1561ЛА7, Н564ЛА7, 564ЛА7 (две последние в других корпусах) или импортная CD4011А.
Дроссель L1 - малогабаритный промышленного изготовления индуктивностью не менее 100 мкГн и сопротивлением обмотки 3...30 Ом. Кнопка SB1 - ПКн-125.
Излучатель звука HA1 - пьезоэлектрический вызывной прибор телефонного аппарата. Его собственная ёмкость - 0,03 мкФ. Подойдут и другие пьезоизлучатели, даже большей ёмкости, рассчитанные на напряжение не менее 20 В. Несколько таких излучателей можно соединить параллельно. Вместо пьезоизлучателя к выходу прибора можно подключить через неполярный разделительный конденсатор электромагнитный телефонный капсюль или динамическую головку с сопротивлением обмотки не менее 32 Ом, например PQAS57P3ZA-DZ.
Датчик протечки воды можно сделать, например, из пластины фольгированного с одной стороны стеклотекстолита. Фольгу разделяют по ломаной линии зазором на две изолированные части, одна из которых служит электродом E1, а вторая - электродом E2. Чем больше протяжённость зазора, тем выше вероятность того, что первые же упавшие на пластину капли воды попадут на него и замкнут электроды.
Несколько таких датчиков, соединив их параллельно, можно разместить в наиболее опасных, с точки зрения протечки воды, местах, например, под радиаторами отопления, стиральной машиной, сочленениями водопроводных труб. Коробку с газорезисто-ром помещают в наиболее подверженном запотеванию при высокой влажности месте помещения, но не на окне.
Подстроечным резистором R3 устанавливают порог срабатывания сигнализатора. Если "сухое сопротивление" газорезистора B1 восстанавливается после снижения влажности слишком долго, в сигнализатор можно установить резисторы R4 и R5 втрое меньшего сопротивления. Повысить чувствительность датчика протёкшей воды можно увеличением сопротивления резистора R9 до 100 кОм. Подбирая сопротивление резистора R20, можно установить желаемую тональность звуковых сигналов. Для удобства проверки работоспособности и налаживания сигнализатора конденсатор C8 можно временно отключить.
Дата публикации: 13.09.2015
Мнения читателей
- Иван
/ 05.04.2016 - 09:28
А есть структурная схема,описание микросхем и печатная плата?
Вот захотел я автоматизировать процесс просушки ванной комнаты после купания. У меня было много обзоров, посвящённых теме влажности. Решил внедрить в жизнь (так сказать) один из методов борьбы с ней. Кстати, зимой в ванной и бельё сушим. Достаточно вытяжной вентилятор включить. Но следить за вентилятором не всегда сподручно. Вот и решил поставить автоматику на это дело. Кому интересно, заходим.
Когда въехал в новую квартиру, почти сразу поставил в вытяжку вентилятор с обратным клапаном. Вентилятор необходим, чтобы просушивать ванную комнату после купания. Обратный клапан нужен для предотвращения попадания в квартиру посторонних запахов от соседей (когда вентилятор молчит). И такое бывает. Вентилятор не простой, с таймером и регулировкой временнОго интервала.
Вот в это изделие китайпрома и хотел вживить купленный модуль.
Так как живу в многоквартирном «муравейнике», то единственное место для сушки белья – это балкон. В ванной может и затухнуть. Необходима циркуляция воздуха. Вентилятор должен был решить эту проблему. Поначалу именно так и делали. Главное не забыть его выключить. Во время работы вентилятора необходимо приоткрывать малость окошко. Про школьную задачку с бассейном и двумя трубами напоминать не надо? Чтобы воздух выходил в вытяжку, необходимо, чтобы он откуда-то входил в квартиру. У кого окна деревянные, а не пластиковые, проблем не будет. Щелей хватит. А вот с пластиковыми квартира превращается в террариум.
Тут я и задумался об автоматизации процесса. Именно для этого я и заказал модуль. Его задачей должно было стать отключение/включение вентилятора при определённых уровнях влажности.
Пора смотреть, в каком виде прибыло. Посылка шла около трёх недель. Модуль был упакован хорошо. В такой пакет их штук двадцать вошло бы.
Сам девайс был запаян в антистатический пакет. Всё по уму. Пайка аккуратная. Претензий по внешнему виду не имею. Даже плата промыта.
Никакой инструкции не было. Только то, что вы видите.
Вот, что написано на странице магазина:
Specification:Напряжение питания: 5В
Weight: 18g
Size: 5 x 2.5 x 1.7 cm (L x W x H)
Current will be more than 150mA
Supply voltage: 5V DC
Maximum load: 10A 250VAC / 10A 125VAC / 10A 30VDC / 10A 28VDC
Максимальная нагрузка: 10А 250В переменного и 10А 30В постоянного тока.
Осталось проверить, как работает. Для этого взял старую (уже ненужную) зарядку от телефона.
Эта зарядка без USB разъёма. Ну очень старенькая. Поэтому на выходе 7В (а не 5В). Пришлось припаять МС стабилизатора КРЕН5. В этом ничего сложного нет. Кто дружит с паяльником, тот знает.
Сильно не пугайтесь, сделал времянку.
Подключил согласно схеме. Схему более менее чего-то подходящего нашёл на Али. Далее редактировал сам согласно тому, что пришло.
Красный светодиод индицирует наличие питающего напряжения. Зелёный – сработку реле. Синим выделил датчик влажности. В основе схемы лежит компаратор на LM393. Подстроечный резистор предназначен для настройки порога срабатывания реле влажности. Всё просто и понятно. Вот только одно НО. Схема НЕ работает.
Пришлось разбираться. Для этого залез в термогигрометр. Обзор (и не один) про него был.
Вскрытие сложностей не доставило. Делал это не один раз.
В данном случае меня интересует только датчик влажности. А с ним не всё так просто. Тестером не звонится. Пришлось искать Datasheet.
А не звонится он потому, что меняет своё частотное сопротивление (рабочая частота 1 кГц). Постоянным током не звонится. Здесь привычный мультиметр не поможет.
Любопытство заставило меня подключить осциллограф параллельно датчику гигрометра.
Вот небольшое видео того, что я увидел.
Девайс обновляет свои показания каждые 10 секунд. Поэтому каждые 10 секунд на датчике появляется колебания, которые фиксирует осциллограф. И никак иначе! Датчик меняет своё сопротивление только по отношению к частоте.
Клякса-мозг отлавливает эти изменения и выдаёт результат на дисплей.
В интернете тоже пришлось полазить.
Таблица зависимости сопротивления датчика от влажности и температуры (на частоте 1кГц):
Датчик ну очень корявый. Меняет своё сопротивление не только от влажности, но и от температуры. Причём зависимость настолько нелинейная, что анализу не поддаётся.
Теперь можно сделать однозначный вывод: Обозреваемый модуль (реле влажности) работать не может в ПРИНЦИПЕ! Компаратор – это не то устройство, что сможет подавать частоту на датчик влажности, а затем анализировать полученные данные. Максимум, что сможет он сделать, это сравнить уровни напряжения на своих входах.
Но нет, уже не доверяя своим выводам, пошёл в ближайший магазинчик радиодеталей и купил МС LM393, правда в другом корпусе. В каком была, в таком и купил, 30 или 40 рублей, не помню. Собрал макетку на скорую руку.
Подключил. НЕ РАБОТАЕТ. Всё! Надо бросать.
Но НЕТ. Надежда умирает последней.
Решил купить на Али аналогичный, но упрощённый модуль (без реле) за $1.29. На тот момент было около 70 рублей.
Подумал, что даже в случае неудачи, останется датчик влажности и готовая схема на компараторе для самоделок за сущие копейки. На этот раз никакого антистатического пакета.
Обычный пакетик с замком.
Модуль другой, но схемотехника та же.
Эту схему я скопировал у китайских товарищей. Всё тоже самое, только нет реле.
Подключил. НЕ РАБОТАЕТ. Всё!
Умерла последняя надежда:(На этом я закончил свои «злоключения».
Китайцы привычно жгут со схемами.
Все модули, что получил, не останутся без дела. Я найду им применение. Можно сделать термореле, можно фотореле. Схема уже готова. Необходимо только установить терморезистор или датчик света (фоторезистор). Но это будет уже другая история.
И этот девайс тоже имеет право на жизнь. Вот только не в таком обличии. Реле влажности в том виде, что получил я – это БЛЕФ. Возможно, они существуют на китайском рынке, но не с такой схемотехникой.
На этом всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Кому что-то неясно, задавайте вопросы. Надеюсь, хоть кому-то помог. Возможно, кто-то захочет помочь мне. Я буду очень благодарен.
Удачи всем!
Чуть не забыл напомнить. Датчик влажности (змейка) покрыт специальным активным слоем, который и позволяет ему менять своё сопротивление. Активный слой трогать руками нельзя! Необходимо также быть внимательным к парам флюса или канифоли.
Для многих производственных процессов очень важно поддерживать необходимый микроклимат, в частности, определенное содержание паров воды в воздухе или газе. Для этой цели используются такие приборы, как гигрометр и гигростат. Первые измеряют содержание водяных паров, вторые поддерживают их необходимый уровень. На рисунке 1 показано устройство Роса-10, используемое как в промышленности, так и сельском хозяйстве.
Рисунок 1. Отечественные приборы Роса-10 в различном исполненииНо датчик влажности применяется не только в производстве (например, для определения характеристик древесины), с его помощью можно регулировать сухость воздуха в помещении (рис.2), измерять насыщение почвы водой и т.д. Предлагаем рассмотреть устройство и принцип работы таких приборов. Это существенно поможет их правильному применению в бытовой сфере, например, чтобы сделать вытяжной вентилятор в ванную, терморегулятор для бани или самодельный датчик температуры и влажности в теплицу.
Рисунок 2. Все современные климатические системы снабжены модулем, измеряющим влажность
Прежде чем перейти к теории, определимся с терминологией.
Терминология
Под абсолютной влажностью подразумевают содержание воды (в граммах) в одном кубометре воздуха. Соответственно, единица измерения этой величины – г/м3. Состояние, при котором содержание воды в газе достигает максимальной величины (100%), называется порогом максимального насыщения или влагоемкостью. При достижении этого предела начинается процесс конденсации.
Необходимо заметить, что влагоемкость прямо пропорциональна температуре: чем она выше, тем большее количество воды может содержаться в том же объеме газа. Именно поэтому цифровой или аналоговый модуль измерения влажности практически всегда снабжен датчиком температуры.
Перейдем к определению, описывающему относительную влажность. Эта величина показывает соотношение влагоемкости и абсолютной влажности, соответствующие температурному режиму на момент измерения. Состояние, при котором эти величины сравняются, называется «точка росы».
Теперь, когда мы определились с терминологией, рассмотрим существующие типы датчиков и узнаем, по какому принципу работает каждый из них.
Виды датчиков и их принцип работы
Наибольшее распространение получили четыре типа приборов, каждый из них имеет свою специфику эксплуатации:
Рисунок 4. Датчик воды SYH-2RS
Поскольку детекторы данного типа чаще всего используются в любительских схемах, мы еще вернемся к рассмотрению их устройства.
Рисунок 6. Аспирационный измеритель влажности МВ-4М
Мы привели наиболее распространенные виды детекторов, на самом деле их значительно больше. Например, есть еще оптический датчик, где используется рассеивание света при образовании конденсата по достижению точки росы, термический (задействованы два терморезистора в открытой и герметичной камере), канальный и т.д.
Устройство детекторов резистивного типа
Теперь, как и обещали, рассмотрим конструктивные особенности сенсоров резистивного типа на примере модели SYH-2RS.
Рисунок 7. Устройство резистивного сенсора
1) – вид сбоку; 2) – вид сверху.
Обозначения:
- а – керамическая подложка;
- b – напыленные электроды;
- c – гигроскопичное покрытие на основе оксида алюминия.
Как видите, конструкция сенсора довольно простая, этим и обуславливает низкая стоимость устройств данного типа. А если еще принять во внимание взаимозаменяемость таких элементов, то неудивительно, что в большинстве самодельных устройств для дома (например, датчик протечки воды) радиолюбители предпочитают использовать резистивные сенсоры.
Краткий обзор имеющихся на рынке устройств их применение
Рассмотрим приборы, которые могут быть полезны в быту, начнем с реле влажности воздуха HIG-2 (рис.8), служащего для управления вытяжкой в ванной.
Рисунок 8. Модуль HIG-2 с релейным выходом
Основные характеристики:
- устройство запитывается от домашней электросети с напряжением 220 В;
- срабатывание при относительной влажности от 60% до 90% (устанавливается);
- допустимый ток нагрузки – не более 2 А;
- время работы вентилятора после срабатывания задается таймером (2-20 мин.).
Как подключить датчик влажности HIG-2?
Для правильного подключения устройства достаточно придерживаться схемы, приведенной в инструкции к прибору, она показана на рисунке 9.
Рисунок 9. Схема подключения вентилятора к модулю контроля влажности
На клемнике прибора есть соответствующие обозначения, поэтому сложностей эта операция не вызовет. Если электропроводке квартиры или на самом вентиляторе не предусмотрено заземление, то его можно не подключать, так же не обязательно ставить на вход питания выключатель.
Тех, кого увлекает концепция «умного дома», наверняка заинтересует внешний сенсор Mi Smart (рис. 10). При установке на смартфон специального приложения можно получать информацию о температуре и влажности в квартире. Если задать в такой программе определенные параметры микроклимата, то она известит, если условия будут нарушены.
Рисунок 10. Беспроводной сенсор производства компании Xiaomi
Заметим, что у этого устройства довольно низкая погрешность измерений (для влажности она в пределах 3%, что касается температуры, то точность показаний порядка 0,3 С°). Существенный недостаток – нерусифицированное программное обеспечение, но данная проблема будет решена в ближайшее время.
Тем, кто хочет сделать для теплицы капельный полив с датчиком влажности, можно порекомендовать сенсор Gardena (рис. 11), который регулирует работу клапанов систем этого же производителя.
Рисунок 11. Сенсор Gardena, управляющий системой полива
Для питания устройства используются две алкалиновые батарейки, их заряда хватает на 10-12 месяцев непрерывной работы.
Теперь рассмотрим характеристики промышленной модели цифрового измерителя Ивит-М.Т (рис. 12), который может применяться в производственной сфере, сельском хозяйстве или ЖКХ.
Рисунок 12. Измеритель влажности с выносным датчиком из серии ИВИТ-М
Перечень основных характеристик:
- для питания прибора необходимо напряжение 18-36 В;
- относительная влажность может быть измерена в диапазоне от 5 % до 95 % (максимальная погрешность не более 4 %);
- измерение температуры воздуха в пределах от -40 С° до 50 С° (модификации Н1, V) или от -40С° до 60°(модели Н2, К1, К2), точность 2 С°;
- прибор может эксплуатироваться в температурном диапазоне от -40 С° до 50 С°.
Любителей поэкспериментировать наверняка заинтересуют сенсоры DHT11 и DHT22 (рис. 13), которые используются вместе с платформой Ардуино. В сети можно найти много интересных решений на этой элементной базе.
Рисунок 13. Сенсоры влажности для платформы Arduino
a) DHT22; b) DHT11.
Как видно из рисунка внешний вид этих датчиков практически идентичен, это же касается и распиновки. Технические характеристики сенсоров очень похожи, за исключением точности и диапазона измерений. Приведем эти данные.
Основные технические параметры DHT11:
- подключение к источнику постоянного напряжения 3-5 В;
- в процессе запроса пиковый уровень потребляемого тока не более 2,5 мА;
- границы измеряемой влажности и температуры – 20-80 % и 0-50 С°, погрешность 5% и 2 С°;
- частота выборки 1 Гц, то есть получать данные можно один раз в течение секунды.
Теперь сравним эти параметры с более точной моделью DHT22:
- напряжение источника питания остается без изменений, как и потребляемы ток при передаче данных;
- влажность измеряется во всем диапазоне 0-100 %, погрешность в пределах 2-5 %;
- границы замеряемой температуры существенно расширены, по сравнению с предыдущей моделью, минимальная -40 С°, максимальная +125 С°.
Стоимость этих приборов вполне доступна на Алиэкспрессе их можно заказать с бесплатной доставкой по $1.28 (DHT11) и $4,9 (DHT22). Если покупать в России цена будет примерно в полтора-два раза дороже. Что касается базовой платформы, то плату Arduino Uno можно приобрести в Поднебесной за $25-$48 (стоимость зависит от комплектации). Программное обеспечение и прошивки скачиваются бесплатно.