Стороны треугольника. Площадь треугольника Найти углы прямоугольного треугольника зная катеты
В математике при рассмотрении треугольника обязательно уделяют много внимание его сторонам. Поскольку данные элементы формируют эту геометрическую фигуру. Стороны треугольника используются для решения многих задач по геометрии.
Определение понятия
Отрезки, соединяющие три точки, которые не лежат на одной прямой, называются сторонами треугольника. Рассматриваемые элементы ограничивают часть плоскости, что называют внутренностью данной геометрической фигуры.
Математики в своих расчетах допускают обобщения, касающиеся сторон геометрических фигур. Так, в вырожденном треугольнике три его отрезка лежат на одной прямой.
Характеристики понятия
Расчет сторон треугольника предполагает определение всех остальных параметров фигуры. Зная длину каждого из этих отрезков можно легко вычислить периметр, площадь и даже углы треугольника.
Рис. 1. Произвольный треугольник.
Суммировав стороны данной фигуры можно определить периметр.
P=a+b+c, где a, b, c – стороны треугольника
А для нахождения площади треугольника тогда следует использовать формулу Герона.
$$S=\sqrt{p(p-a)(p-b)(p-c)}$$
Где p – полупериметр.
Углы данной геометрической фигуры вычисляют через теорему косинусов.
$$cos α={{b^2+c^2-a^2}\over{2bc}}$$
Значение
Через соотношение сторон треугольника выражают некоторые свойства этой геометрической фигуры:
- Напротив наименьшей стороны треугольника находится его наименьший угол.
- Внешний угол рассматриваемой геометрической фигуры получают, продлевая одну из сторон.
- Напротив равных углов треугольника лежат равные стороны.
- В любом треугольнике одна из сторон всегда больше разности двух других отрезков. А сумма любых двух сторон этой фигуры больше третьей.
Один из признаков равенства двух треугольников является соотношение суммы всех сторон геометрической фигуры. Если эти значения одинаковые, то и треугольники будут равными.
Некоторые свойства треугольника зависят от его типа. Поэтому вначале следует учитывать величину сторон или углов этой фигуры.
Формирование треугольников
Если две стороны рассматриваемой геометрической фигуры будут одинаковыми, то этот треугольник называют равнобедренным.
Рис. 2. Равнобедренный треугольник.
Когда все отрезки в треугольнике будут равны, то получится равносторонний треугольник.
Рис. 3. Равносторонний треугольник.
Любое вычисление удобнее проводить в тех случаях, когда произвольный треугольник можно отнести к определенному типу. Поскольку тогда нахождение требуемого параметра этой геометрической фигуры значительно упростится.
Хотя правильно подобранное тригонометрическое уравнение позволяет решить многие задачи, в которых рассматривается произвольный треугольник.
Что мы узнали?
Три отрезка, которые соединены между собой точками и не принадлежат одной прямой, формируют треугольник. Эти стороны образуют геометрическую плоскость, что используется при определении площади. С помощью данных отрезков можно найти много таких важных характеристик фигуры, как периметр и углы. Соотношение сторон в треугольнике помогает найти его тип. Некоторыми свойствами данной геометрической фигуры можно воспользоваться только, если известны размеры каждой из ее сторон.
Тест по теме
Оценка статьи
Средняя оценка: 4.3 . Всего получено оценок: 142.
Прямоугольным называется треугольник, один из углов которого равен 90º. Сторона, противолежащая прямому углу, называется гипотенузой, а две другие – катетами.
Чтобы найти угол в прямоугольном треугольнике, используются некоторые свойства прямоугольных треугольников, а именно: то, что сумма острых углов равна 90º, а также то, что напротив катета, длина которого в два раза меньше гипотенузы, лежит угол, равный 30º.
Быстрая навигация по статье
Равнобедренный треугольник
Одно из свойств равнобедренного треугольника — два его угла равны. Для вычисление значений углов прямоугольного равнобедренного треугольника нужно знать, что:
- Прямой угол равен 90º.
- Значения острых углов определяются по формуле: (180º-90º)/2=45º, т.е. углы α и β равны 45º.
Если известна величина одного из острых углов, второй можно найти по формуле: β=180º-90º-α, или α=180º-90º-β. Чаще всего это соотношение используется, если один из углов равен 60º или 30º.
Ключевые понятия
Сумма внутренних углов треугольника равна 180º. Так как один угол прямой, два оставшихся будут острыми. Для их нахождения необходимо знать, что:
Другие способы
Величины острых углов прямоугольного треугольника можно вычислить, зная значение медианы – линии, проведенной из вершины к противоположной стороне треугольника, и высоты – прямой, представляющей собой перпендикуляр, опущенный из прямого угла на гипотенузу. Пусть s – медиана, проведенная из прямого угла к середине гипотенузы, h — высота. В таком случае получается, что:
- sin α=b/(2*s); sin β =a/(2*s).
- cos α=a/(2*s); cos β=b/(2*s).
- sin α=h/b; sin β =h/a.
Две стороны
Если в прямоугольном треугольнике известны длины гипотенузы и одного из катетов, либо две стороны, для нахождения значений острых углов используются тригонометрические тождества:
- α=arcsin(a/c), β=arcsin(b/c).
- α=arcos(b/c), β=arcos(a/c).
- α=arctg(a/b), β=arctg(b/a).
В геометрии угол - это фигура, которая образована двумя лучами, которые выходят из одной точки (она называется вершиной угла). В большинстве случаев единицей измерения угла является градус (°) - помните, что полный угол или один оборот равен 360°. Найти значение угла многоугольника можно по его типу и значениям других углов, а если дан прямоугольный треугольник, угол можно вычислить по двум сторонам. Более того, угол можно измерить с помощью транспортира или вычислить с помощью графического калькулятора.
Шаги
Как найти внутренние углы многоугольника
- Например, у треугольника 3 стороны и 3 внутренних углов, а у квадрата 4 стороны и 4 внутренних углов.
-
Вычислите сумму всех внутренних углов многоугольника. Для этого воспользуйтесь следующей формулой: (n - 2) x 180. В этой формуле n - это количество сторон многоугольника. Далее приведены суммы углов часто встречающихся многоугольников:
- Сумма углов треугольника (многоугольника с 3-мя сторонами) равна 180°.
- Сумма углов четырехугольника (многоугольника с 4-мя сторонами) равна 360°.
- Сумма углов пятиугольника (многоугольника с 5-ю сторонами) равна 540°.
- Сумма углов шестиугольника (многоугольника с 6-ю сторонами) равна 720°.
- Сумма углов восьмиугольника (многоугольника с 8-ю сторонами) равна 1080°.
-
Разделите сумму всех углов правильного многоугольника на число углов. Правильный многоугольник это многоугольник с равными сторонами и равными углами. Например, каждый угол равностороннего треугольника вычисляется так: 180 ÷ 3 = 60°, а каждый угол квадрата находится так: 360 ÷ 4 = 90°.
- Равносторонний треугольник и квадрат - это правильные многоугольники. А у здания Пентагона (Вашингтон, США) и дорожного знака «Стоп» форма правильного восьмиугольника.
-
Вычтите сумму всех известных углов из общей суммы углов неправильного многоугольника. Если стороны многоугольника не равны друг другу, и его углы также не равны друг другу, сначала сложите известные углы многоугольника. Теперь полученное значение вычтите из суммы всех углов многоугольника - так вы найдете неизвестный угол.
- Например, если дано, что 4 угла пятиугольника равны 80°, 100°, 120° и 140°, сложите эти числа: 80 + 100 + 120 + 140 = 440. Теперь вычтите это значение из суммы всех углов пятиугольника; эта сумма равна 540°: 540 - 440 = 100°. Таким образом, неизвестный угол равен 100°.
Совет: неизвестный угол некоторых многоугольников можно вычислить, если знать свойства фигуры. К примеру, в равнобедренном треугольнике две стороны равны и два угла равны; в параллелограмме (это четырехугольник) противоположные стороны равны и противоположные углы равны.
Измерьте длину двух сторон треугольника. Самая длинная сторона прямоугольного треугольника называется гипотенузой. Прилежащая сторона это сторона, которая находится возле неизвестного угла. Противолежащая сторона - это сторона, которая находится напротив неизвестного угла. Измерьте две стороны, чтобы вычислить неизвестные углы треугольника.
Совет: воспользуйтесь графическим калькулятором , чтобы решить уравнения, или найдите онлайн-таблицу со значениями синусов, косинусов и тангенсов.
Вычислите синус угла, если вам известны противолежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: sin(x) = противолежащая сторона ÷ гипотенуза. Например, противолежащая сторона равна 5 см, а гипотенуза равна 10 см. Разделите 5/10 = 0,5. Таким образом, sin(x) = 0,5, то есть x = sin -1 (0,5).
Сосчитайте число сторон многоугольника. Чтобы вычислить внутренние углы многоугольника, сначала нужно определить, сколько у многоугольника сторон. Обратите внимание, что число сторон многоугольника равно числу его углов.
Первые - это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».
Египетский треугольник
Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.
Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).
Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется "египетским". Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.
При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.
Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.
Признаки равенства фигур
- Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, - бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
- При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.
По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.
Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.
Свойства треугольника с прямым углом
Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.
Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.
В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.
- При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
- Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
- Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.
Площадь легко узнать по одной из трех формул:
- через высоту и сторону, на которую она опускается;
- по формуле Герона;
- по сторонам и углу между ними.
Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.
Теоремы, применяемые к прямоугольному треугольнику
Геометрия прямоугольного треугольника включает в себя использование таких теорем, как: