Большая энциклопедия нефти и газа. Деревянные стропильные фермы. Конструкция стропильных ферм

Не знаете, как сделать легкое и жесткое перекрытие в строительных конструкциях с большой шириной пролета? В таких случаях лучше всего использовать плоские металлические фермы для крыши. Я расскажу, что такое ферма, и как ее можно сделать самому в условиях домашней мастерской.

Из чего состоит ферма

По определению ферма - это строительная конструкция из жестких стержней, которые соединяются между собой в узлах и образуют геометрически неизменяемую систему. Единственная неизменяемая геометрическая фигура в системе координат - это треугольник, поэтому любая фермическая конструкция состоит из множества соединенных между собой треугольников.

Технические параметры ферм характеризуются следующими величинами:

  • Длина пролета - расстояние между двумя ближайшими опорными точками;
  • Панель нижнего пояса - расстояние между двумя смежными узлами на нижней продольной балке;
  • Панель верхнего пояса - расстояние между ближайшими двумя узлами на верхней продольной балке;
  • Высота - габаритный размер фермы с параллельными поясами по вертикали.

Если балка верхнего пояса расположена не параллельно балке нижнего пояса, то указывается два значения высоты Н1 и Н2. Измеряется от балки нижнего пояса, до самой нижней и самой верхней точки балки верхнего пояса.


  1. Нижний пояс - продольная горизонтальная балка, которая связывает все соединительные узлы в нижней части фермической конструкции;
  2. Верхний пояс - продольная, наклонная или радиусная балка, связывающая все соединительные узлы в верхней части фермы;
  3. Стойки - вертикальные поперечные связи, которые соединяют все узлы нижнего и верхнего поясов. Воспринимают и распределяют по всей ферме основную нагрузку на сжатие;
  4. Раскосы - диагональные поперечные связи, соединяющие все узлы верхнего и нижнего поясов. Воспринимают нагрузку на сжатие и растяжение. Оптимальный угол наклона раскосов - 45°;


  1. Узлы - точки соединения вертикальных стоек и диагональных раскосов с горизонтальными балками нижнего и верхнего пояса фермы. В строительной механике условно принимаются как шарнирное сочленение;
  2. Узловые соединения . При изготовлении фермических конструкция применяется два способа соединения всех элементов в узлах:
  • Сварное соединение с непосредственным примыканием всех элементов друг к другу;
  • Болтовое или клепаное соединение - все пояса и решетки поперечных связей соединяются между собой при помощи фасонки из толстого листового металла.


При изготовлении сварной фермы из тонкостенной стальной трубы или уголка, для сваривания элементов между собой также иногда применяются фасонки.

Разновидности фермических конструкций

Основное преимущество ферм перед сплошными балками - это высокая несущая способность при малом удельном весе и небольшом расходе материалов. По своему устройству и характеру распределения нагрузок, фермические конструкции делятся на два вида:

  1. Плоские фермы - это такие конструкции, в которых все стержни расположены в одной плоскости:
  • Направление вектора приложенной нагрузки должно совпадать с плоскостью расположения фермы:
  • Для противодействия боковым и сдвигающим нагрузкам плоские фермы нужно скреплять дополнительными продольными и диагональными связями.
  1. Пространственные фермы - собираются из набора стержней, которые ориентированы во всех трех плоскостях:
  • Они немного сложнее в изготовлении, но в то же время способны выдерживать одновременное воздействие вертикальных, горизонтальных и боковых нагрузок;
  • За счет этого пространственные металлические конструкции можно устанавливать без связей с другими конструкциями, поэтому их нередко используют для изготовления одиночных балок, опорных столбов, мачт и пр.


В частном жилищном строительстве обычно используются плоские фермы, которые в свою очередь, также делятся на несколько видов:

  1. Полигональные фермы:
  • Для изготовления нижнего пояса используется одна сплошная балка, а верхний радиусный пояс собирается из нескольких прямых отрезков;
  • Полигональные стальные фермы применяются для строительства арочных ангаров или полукруглых навесов и козырьков с большой шириной пролета.
  1. Трапециевидные фермы:
  • Нижний пояс изготавливается из одной сплошной балки, а верхний - из двух наклонных;
  • Трапециевидная металлическая ферма чаще всего используется в промышленном строительстве при больших пролетах, поскольку способна выдерживать значительные весовые и ветровые нагрузки. Главный недостаток - большая высота.
  1. Параллельные или прямоугольные фермы:
  • Из названия понятно, что верхний и нижний пояса изготавливаются из двух параллельных балок, а очертание конструкции имеет прямоугольную форму;
  • Это наиболее распространённый вид ферм. Их несложно изготовить своими руками и они практически не имеют ограничения по использованию.
  1. Сегментные фермы:
  • Изготавливаются по аналогии полигональной конструкции, только для верхнего пояса используются не прямые балки, а цельный сегмент окружности;
  • Для изготовления сегментов я советую использовать прокатный станок для стальных труб;
  1. Симметричная треугольная ферма:
  • Изготавливаются в виде равнобедренного треугольника с вертикальными стойками и диагональными связями;
  • Применяются при строительстве двухскатной кровли, а наклонные балки верхнего пояса используются в качестве стропил.
  1. Несимметричные треугольные фермы:
  • Имеют похожую конструкцию, но изготавливаются в виде прямоугольного треугольника;
  • Применяются в качестве несущих стропильных ферм для односкатной наклонной кровли.


Как сделать ферму для крыши

Ниже представлена инструкция по изготовлению плоской параллельной фермы. Если вам нужна фермическая конструкция другой формы, вы ее сможете изготовить аналогично.

Этап 1: подготовка инструментов и материалов

Для изготовления ферм и пролетов понадобится гараж или просторная домашняя мастерская, набор слесарных инструментов и сварочное оборудование:

Иллюстрация Описание работ


Слесарные инструменты:
  1. Прочный и устойчивый металлический верстак;
  2. Большие слесарные тиски;
  3. Ножовка по металлу;
  4. Тяжелый молоток и кувалда;
  5. Набор напильников по металлу;
  6. Пассатижи и плоскогубцы;
  7. Линейка, рулетка, штангенциркуль и пр.


Электроинструменты:
  1. Дисковая или ленточная отрезная машинка по металлу;
  2. Болгарка с набором зачистных и отрезных дисков по металлу;
  3. Электродрель или сверлильный станок с набором сверл;
  4. Точильный станок с наждачным камнем;
  5. Электродуговой сварочный аппарат с электродами 3-4 мм.
Инженерные расчеты:
  1. Расчет навеса из профильной трубы удобно выполнять при помощи специальной программы;
  2. Для этого нужно задать начальные характеристики:
  • Длину пролета;
  • Количество опорных точек;
  • Высоту балки на опорах;
  • Высоту балки по центру;
  • Тип и форму фермической решетки;
  • Сечение и сортамент используемого металлопроката.
  1. На основании этих данных программа выдаст готовые технические чертежи с указанием всех размеров (как на фото).


Подготовка металла:
  1. Металлопрокат распилить на нужные отрезки, в соответствии с чертежами;
  2. После распиловки снять с торцов труб заусенцы и протереть их от заводской смазки уайт-спиритом и ацетоном;
  3. Если на трубах есть следы коррозии, их надо удалить болгаркой с зачистным диском;
  4. В трубах разметить и просверлить все необходимые отверстия;
  5. Для удобства каждую группу отрезков связать малярным скотчем и пометить маркером.


Изготовление металлических ферм:
  1. На сварочный стол уложить балки верхнего и нижнего пояса, и приварить к ним крайние боковые стойки;
  2. После этого вварить внутрь все вертикальные стойки и диагональные раскосы;
  3. Опорные пятки, кронштейны и монтажные пластины привариваются в самую последнюю очередь;
  4. Сначала все детали надо собрать на точечных прихватках;
  5. Когда вы убедитесь, что все сделано правильно, нужно обварить соединения сплошным швом;
  6. Сварные швы зачистить от шлака и окалины;
  7. Готовые навесы из профильной трубы покрасить антикоррозионной грунтовкой и эмалью по металлу.

Если вам нужно сварить много однотипных деталей, я рекомендую предварительно изготовить шаблон на листе плотного картона, оргалита или фанеры.

Заключение

Теперь вы знаете, для чего используются металлические фермы, и как их можно изготовить в гараже или в домашней мастерской. Советую также смотреть видео в этой статье, а все свои вопросы и пожелания оставлять ниже в комментариях.

Фермой называется стержневая система, остающаяся геометрически неизменяемой после условной замены ее жестких узлов шарнирными. Фермы имеют назначение, по существу, такое же, как и балки сплошного сечения, но применяются для перекрытия значительных пролетов, когда проектирование сплошных балок (например, двутавровых) становится экономически невыгодным вследствие неполного использования материала стенки, напряжения в которой меньше, чем в полках (см. эпюру нормальных напряжений в поперечных сечениях балки на рис. 4.1), и необходимости утолщения вертикальной стенки в связи с возможностью ее выпучивания (при значительной высоте стенки).

В таких случаях сплошную балку заменяют стержневой системой - фермой, элементы которой (стержни) при действии сосредоточенных нагрузок, приложенных в узлах, работают главным образом на центральное сжатие или растяжение. Это дает возможность значительно лучше использовать материал фермы, так как эпюры нормальных напряжений в поперечных сечениях каждого из ее стержней практически имеют вид прямоугольников. Поэтому ферма легче балки со сплошной стенкой, имеющей одинаковые с ней пролет и высоту. Примером фермы может служить система, изображенная на рис. 4.2.

Кроме плоских ферм, у которых оси всех стержней расположены в одной плоскости, применяются пространственные фермы, оси элементов которых не лежат в одной плоскости (рис. 4.3). Расчет пространственной фермы во многих случаях удается свести к расчету нескольких плоских ферм.

Расстояние между осями опор фермы (рис. 4.4, а) называется пролетом; стержни, расположенные по внешнему контуру фермы, называются поясными и образуют пояса, стержни, соединяющие пояса, образуют решетку фермы и называются: вертикальные - стойками, наклонные - раскосами.


Расстояние между соседними узлами любого пояса фермы (обычно измеряемое по горизонтали) называется панелью.

Классификацию ферм проведем по следующим пяти признакам: 1) характеру очертания внешнего контура; 2) типу решетки; 3) типу опирания фермы;

4) назначению фермы; 5) уровню езды.

По характеру очертания различают фермы с параллельными поясами (рис. 4.4, а) и с ломаным или так называемым полигональным расположением поясов. К последним относятся, например, фермы с параболическим

очертанием верхнего пояса (рис. 4.4, б) и фермы треугольного очертания (рис. 4.4, в).

По типу решетки фермы делятся на: фермы с треугольной решеткой (рис. 4.5, а); фермы с раскосной решеткой (рис. 4.5, б) фермы с полураскосной решеткой (рис. 4.5, в); фермы с ромбической решеткой (рис. 4.5, г); двухрешетчатые (рис. 4.5, д), многорешетчатые (рис. 4.5, е).

По типу опирания фермы могут быть: закрепленными, у обоих концов - балочными (рис. 4.6, а) или арочными (рис. 4.6, д, е); консольными - закрепленными у одного конца (рис. 4.6, б); балочно-консольными (рис. 4.6, в, г).

В зависимости от назначения различают фермы стропильные (рис. 4.7, а), крановые (рис. 4.7, б), башенные (рис. 4.7, в), мостовые (рис. 4.8) и др.

Мостовые фермы в зависимости от уровня езды делятся на фермы с ездой понизу (рис. 4.8, а), фермы с ездой поверху, (рис. 4.8, б) и фермы с ездой посередине (рис. 4.8, в).

Стропильная ферма металлическая:

Стропильные балки и фермы могут быть выполнены из профильной трубы. Компания Энергостройгрупп готова осуществить изготовление стропильных ферм и произвести качественный монтаж стропильных ферм в короткие сроки.


Угол уклона кровли 22 – 30 градусов:

Если в проекте дома, который вы строите, указан угол уклона кровли 22-30 градусов и вы хотите покрыть крышу шифером, сделать железное или этернитовое кровельное покрытие, выбирать лучше ферму треугольной формы, высота которой составит одну пятую часть длины пролета. Весит такая ферма немного. Стропильная ферма чертеж представлен ниже.

Схема стропильных ферм для угла наклона крыши 22-30 градусов:

Узлы стропильной фермы.


Если длина пролета 14-20 метров, выбирайте конструкцию с идущими вниз раскосами, так как здесь тоже большую роль играет небольшой вес. Верхняя часть фермы должна иметь панель длиной 1,5 - 2,5 метра. Оба пояса конструкции составляет четное количество панелей. Если принять во внимание размеры, написанные выше, для такой фермы количество панелей должно составлять восемь.

Если сооружается промышленная постройка, стальные стропильные фермы монтируются на подстропильные металлические конструкции. Эти конструкции являются связующими элементами для опорных колонн. Длина пролетов в данном случае - 20-35 метров. Необходим монтаж фермы Полонсо. Это структура из 2 ферм треугольной формы, они соединены между собой при помощи затяжки. Такое сооружение дает возможность избежать длинных раскосов в панелях в середине, ведь, чтобы сопротивляться продольному изгибу, они должны иметь очень большое сечение, что сделает всю конструкцию тяжелее во много раз. Верхняя часть фермы разбита на двенадцать или шестнадцать панелей. Панели в длину составляют 2-2,75 метра. Если потолок прикрепляется к фермам, затяжка крепится в узлах пояса сверху.


Угол уклона кровли 15 – 22 градуса:

Как показывает расчет, в данном случае нужна высота фермы в одну седьмую часть длины пролета. Пролет - до 20 метров (если больше, лучше делать Полонсо). Для увеличения высоты конструкции до 0,23 длины пролета пояс, расположенный внизу, делается ломаным.

Так, металлические фермы весят примерно на 30 процентов меньше, по сравнению с треугольными конструкциями. Чтобы использовать такие фермы с восемью панелями, нужно увеличить чердачные стены.


Угол уклона кровли 6 – 15 градусов:

Угол уклона крыши небольшой – ставятся трапециевидные фермы. Меньше всего ферма будет весить, если ее высота будет равна одной седьмой или одной девятой части длины пролета.

Если не подразумевается подвешивание к конструкции потолка, нужна треугольная решетка в качестве раскосов. Расчет количества панелей проводится по аналогии с расчетом панелей для треугольной конструкции. Если длина чердачных стен недостаточна, у опор делаются переломы крыши. Когда необходимо подвешивание потолка, все панели фермы должны иметь одинаковую длину (в обоих поясах) 1,5-2,5 метра, а к раскосам прибавляются стойки. Чтобы металлические конструкции не были тяжелыми, используется решетка, в которой усилие по сжатию принимается коротенькими стойками.

Стропильная ферма конструкция.


В том случае когда предполагается геометрически сложный потолок и его среднюю часть нужно приподнять над опорами фермы, более подходящий вариант - ферма Полонсо.

Если же нужна еще большая высота потолка от опор, выбор стоит остановить на многоугольной ферме из стропил. У таких конструкций нижний пояс поднят.

Когда крыша односкатная и угол ее уклона 6-10 градусов, делается ферма асимметричной формы.

Помимо профильной трубы, в качестве материала для стропильных ферм могут быть использованы швеллер (балки из металла, в сечении - буква П), тавр (металлический профиль с сечением в виде буквы Т), уголок (металлический профиль с сечением в виде буквы Г).

Преимущество конструкции из профильной трубы в том, что она легче, по сравнению с конструкциями из материалов, обозначенных выше. Также сварка позволяет собрать конструкцию прямо на месте.

Технологические требования СНиП.

Схема зависимости длины стропил от угла наклона кровли:




  1. Выбор схемы. Определяем контуры поясов фермы. Очертания конструкции выбираются в связи с функциями сооружения, типом покрытия крыши, углом уклона.
  2. Выбор размеров конструкции. Если ТТ не предусматривают другого, длина фермы определяется по принципу экономии. Высота конструкции зависит от типа кровельного материала, возможности перемещения фермы, минимально возможного ее веса и возможности обеспечения установленного угла уклона поясов.
  3. Расчет строительного подъема (погашаемый обратный выгиб конструкции от нагрузок), если пролет превышает тридцать шесть метров.
  4. Определение панельных размеров. Эти размеры должны быть в соответствии с расстоянием между частями, передающими нагрузку на металлоконструкцию. Не забывайте: угол раскоса у разных ферм разный, а размеры панели должны ему отвечать. При решетке треугольной формы этот угол составляет 45 градусов. Если форма решетки раскосная, 35 градусов.
  5. Указываем расстояние между узлами фермы. Обычно оно равно ширине панели.

Советы:

Будьте аккуратны! Малейшая погрешность в расчетах может привести к ошибкам во время строительства. Лучше проконсультироваться с опытным мастером по поводу схемы, прежде чем переходить к ее реализации;

Во избежание долгих и тяжелых расчетов ферм можно взять готовые типовые проекты, которые используют при постройке производственных сооружений и общественных зданий.

Размещено на http://www.allbest.ru/

"Строительные фермы"

ферма сечение стержень коробчатый

Классификация и область применения ферм

Происхождение термина «ферма» берет начало от латинского firmus, то есть «прочный, крепкий».

Фермой называется система стержней соединенных между собой в узлах и образующих геометрически неизменяемую конструкцию. При узловой нагрузке жесткость узлов несущественно влияет на работу конструкции, и в большинстве случаев их можно рассматривать как шарнирные. В этом случае все стержни ферм испытывают только растягивающие или сжимающие осевые усилия.

Фермы экономичнее балок по расходу стали, но более трудоемки в изготовлении. Эффективность ферм по сравнению со сплошностенчатыми балками тем больше, чем больше пролет и меньше нагрузка.

Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными.

Плоские фермы воспринимают нагрузку, приложенную только в их плоскости, и нуждаются в закреплении их связями. Пространственные фермы образуют жесткий пространственный брус, воспринимающий нагрузку в любом направлении (рис.9.1).

Рис. 9.1. Плоская (а) и пространственная (б) фермы

Основными элементами ферм являются пояса, образующие контур фермы, и решетка, состоящая из раскосов и стоек (рис. 9.2). Соединение элементов в узлах осуществляется путем непосредственного примыкания одних элементов к другим (рис 9.3,а) или с помощь ю узловых фасонок (рис. 9.3,б). Элементы ферм центрируются по осям центра тяжести для снижения узловых моментов и обеспечения работы стержней на осевые усилия.


Рис. 9.2. Элементы ферм

1 - верхний пояс; 2 - нижний пояс; 3 - раскосы; 4 – стойки


Рис. 9.3. Узлы ферм: а - с непосредственным примыканием элементов; б - на фасонках

Расстояние между соседними узлами поясов называется панелью (d в - панель верхнего пояса, d н - нижнего), а расстояние между опорами - пролетом (/).

Пояса ферм работают на продольные усилия и момент (аналогично поясам сплошных балок); решетка ферм воспринимает в основном поперечную силу, выполняя функции стенки балки.

Знак усилия (минус - сжатие, плюс - растяжение) в элементах решетки ферм с параллельными поясами можно определить, если воспользоваться “балочной аналогией”.

Стальные фермы широко применяются во многих областях строительства; в покрытиях и перекрытиях промышленных и гражданских зданий, мостах, опорах линий электропередачи, объектах связи, телевидения и радиовещания (башни, мачты), транспортных эстакадах, гидротехнических затворах, грузоподъемных кранах и т. д.

Фермы имеют разную конструкцию в зависимости от назначения, нагрузок и классифицируются по различным признакам:

по статической схеме - балочные (разрезные, неразрезные, консольные);

по очертанию поясов - с параллельными поясами, трапециевидные, треугольные, полигональные, сегментные (рис. 9.5);

Рис.9.4. Системы ферм: а - балочная разрезная; б - неразрезная; в,е - консольная; г - арочная; д - рамная;

по системе решетки - треугольная, раскосная, крестовая, ромбическая и др. (рис.9.6);

по способу соединения элементов в узлах - сварные, клепанные, болтовые;


Рис. 9.5. Очертания поясов ферм: а - сегментное; б - полигональное; в - трапецеидальное; г - с параллельными поясами; д-и - треугольное

по величине максимального усилия - легкие - одностенчатые с сечениями из прокатных профилей (усилие N < 300 кН) и тяжелые - двухступенчатые с элементами составного сечения (усилие N > 300кН).

Промежуточными между фермой и балкой являются комбинированные системы, состоящие из балки, подкрепленной снизу шпренгелем или раскосами либо аркой (сверху). Подкрепляющие элементы уменьшают изгибающий момент в балке и повышают жесткость системы (рис.9.4,^). Комбинированные системы просты в изготовлении (имеют меньшее число элементов) и рациональны в тяжелых конструкциях, а также в конструкциях с подвижными нагрузками.

Эффективность ферм комбинированных систем можно повысить, создав в них предварительное напряжение.

В фермах подвижных крановых конструкций и покрытий больших пролетов, где уменьшение веса конструкции дает большой экономический эффект, применяют алюминиевые сплавы.


Рис. 9.6. Системы решетки ферм

а - треугольная; б - треугольная с дополнительными стойками; в - раскосная с восходящими раскосами; г - раскосная с нисходящими раскосами; д - шпренгельная; е - крестовая; ж - перекрестная; и - ромбическая; к - полу раскосная

Компоновка конструкций ферм

Выбор статической схемы и очертания фермы - первый этап проектирования конструкций, зависящий от назначения и архитектурно - конструктивного решения сооружения и производится на основании сравнения возможных вариантов.

В покрытиях зданий, мостах, транспортных галереях и других сооружениях нашли применение балочные разрезные системы. Они просты в изготовлении и монтаже, не требуют устройства сложных узлов, но весьма металлоемки. При пролетах балок 40м разрезные фермы получаются негабаритными, и их собирают при монтаже.

Для двух и более перекрываемых пролетов применяют неразрезные фермы. Они экономичнее по расходу металла и обладают большей жесткостью, что позволяет уменьшить их высоту. Применение неразрезных ферм при слабых грунтах не рекомендуется, так как при осадке опор возникают дополнительные усилия. Кроме того, неразрезность усложняет монтаж.

Рамные фермы экономичнее по расходу стали, имеют меньшие габариты, но более сложны в монтаже. Их рационально применять для большепролетных зданий. Арочные системы, дают экономию стали, но приводят к увеличению объема помещения и поверхности ограждающих конструкций. Применение их диктуется архитектурными требованиями. Консольные фермы используют для навесов, башен, опор ЛЭП.

Очертания ферм должны соответствовать их статической схеме и виду нагрузок, определяющих эпюру изгибаемых моментов. Для ферм покрытий необходимо учитывать материал кровли и требуемый уклон для обеспечения водоотвода, тип узла сопряжения с колоннами (жесткий или шарнирный) и другие технологические требования.

Очертания поясов ферм определяет их экономичность. Наиболее экономичной по расходу стали является ферма, очерченная по эпюре моментов. Для однопролетной балочной системы с равномерно распределенной нагрузкой будет сегментная ферма с параболическим поясом (см.рис.9.5,а). Однако криволинейные пояса очень трудоемки в изготовлении, поэтому такие фермы применяют крайне редко. Более применяемыми являются полигональные фермы (см.рис.9.5,б). В тяжелых большепролетных фермах дополнительные конструктивные затруднения из-за перелома поясов в узлах не так ощутимы, так как из условия транспортировки пояса в таких фермах приходится стыковать в каждом узле.

Для легких ферм полигональное очертание нерационально, поскольку усложнение узлов не окупается экономией стали.

Фермы трапецеидальные (см.рис.9.5,в), хотя не совсем соответствуют эпюре моментов, имеют конструктивные преимущества, за счет упрощения узлов. Кроме того, применение таких ферм в покрытии позволяет устроить жесткий рамный узел, что повышает жесткость здания.

Фермы с параллельными поясами (рис.9 5,г) по своему очертанию далеки от эпюры моментов и неэкономичны по расходу стали. Однако равные длины элементов решетки, одинаковая схема узлов, повторяемость элементов и деталей, возможность их унификации способствуют индустриализации их изготовления. Поэтому фермы с параллельными поясами стали основными для покрытия производственных зданий.

Фермы треугольного очертания (см.рис.9.5,д-ж,и) рациональны для консольных систем и для балочных при сосредоточенной нагрузке в середине пролета (подстропильные фермы). Недостатком этих фермявляется повышенный расход металла при распределенной нагрузке; острый опорный узел сложен и допускает только шарнирное сопряжение с колоннами, Средние раскосы очень длинные и их приходится подбирать по предельной гибкости, что ведет к перерасходу металла. Однако иногда их используют для стропильных конструкций, когда необходимо обеспечить большой уклон кровли (свыше 20%) или для создания одностороннего равномерного освещения (шедовые покрытия).

Пролет или длина ферм определяется эксплуатационными требованиями и обще компоновочным решением сооружения и рекомендуется конструктором. Там где пролет не диктуется технологическими требованиями (например, эстакады поддерживающие трубопроводы и т.п.), его назначают на основе экономических соображений, по наименьшей суммарной стоимости ферм и опор.

Высота треугольных ферм (см.рис.9.5,д) является функцией пролета и уклона фермы (25-45 0), что дает высоту ферм h «(1,4 -1/2)/. Высота обычно бывает выше требуемой, поэтому треугольные фермы не экономичны. Высоту фермы можно уменьшить, придав нижнему поясу приподнятое очертание (см.рис.9.5,г), но опорный узел не должен быть очень острым.

Для высоты трапецеидальных ферм и ферм с параллельными поясами нет конструктивных ограничений, высоту фермы принимают из условия наименьшего веса фермы. Вес фермы складывается из веса поясов и решетки. Вес поясов уменьшается с увеличением высоты фермы, так как усилия в поясах обратно пропорциональны высоте h

Вес решетки наоборот, с увеличением высоты фермы возрастает, так как увеличивается длина раскосов и стоек, поэтому оптимальная высота ферм составляет 1/4 - 1/5 пролета. Это приводит к тому, что при пролете 20м высота фермы больше предельно (3,85м) допустимой по условию транспортировки. Поэтому с учетом требований транспортировки, монтажа, унификации высоту ферм принимают в пределах 1/7 - 1/12 пролета (для легких ферм еще меньше).

Наименьшая возможная высота фермы определяется допустимым прогибом. В обычных кровельных покрытиях жесткость ферм превосходит требуемую. В конструкциях работающих на подвижную нагрузку (фермы подкрановых эстакад, мостовых кранов и т. п.) требования жесткости настолько высоки (f// = 1/750 - 1/1000), что они диктуют высоту фермы.

Прогиб фермы определяют аналитически по формуле Мора

F = Е NiN -/i (9.1)

где Ni - усилие в стержне фермы от заданной нагрузки; Ni - усилие в том же стержне от силы, равной единице, приложенной в точке определения прогиба по направлению прогиба.

Размеры панели должны соответствовать расстояниям между элементами, передающими нагрузку на ферму, и отвечать оптимальному углу наклона раскосов, который в треугольной решетке составляет примерно 45 0 , а в раскосной решетке - 35 0 . Из конструктивных соображений - рационального очертания фасонки в узле и удобства прикрепления раскосов - желателен угол близкий к 45 0 .

В стропильных фермах размеры панелей принимаются в зависимости от системы кровельного покрытия.

Желательно для исключения работы пояса на изгиб обеспечить передачу нагрузки от кровли на узлы фермы. Поэтому в покрытиях из крупноразмерных железобетонных или металлических плит расстояние между узлами принимается равным ши рине плиты (1,5м или 3м), а в покрытиях по прогонам

    шагу прогонов (от 1,5м до 4м). Иногда для уменьшения размеров панели пояса принимается шпренгельная решетка (см. рис. 9.6,д).

Унификация и модулирование геометрических размеров ферм позволяет стандартизировать как сами фермы, так и примыкающие к ним элементы (прогоны, связи и т. д.). Это приводит к сокращению числа типоразмеров деталей и дает возможность при массовом изготовлении конструкций применять специализированное оборудование и перейти на поточное производство.

В настоящее время унифицированы геометрические схемы стропильных ферм производственных зданий, мостов, радиомачт, радио башен, опор линий электропередачи.

Строительный подъем. В фермах больших пролетов (более 36м), а также в фермах из алюминиевых сплавов или высокопрочных сталей возникают большие прогибы, которые ухудшают внешний вид конструкции и недопустимы по условиям эксплуатации.

Провисание ферм предотвращается устройством стропильного подъема, т. е. изготовление ферм с обратным выгибом, который под действием нагрузки погашается, и ферма принимает проектное положение. Строительный подъем назначают равным прогибу от постоянной плюс половину временных нагрузок. При плоских кровлях и пролетах больше 36м строительный подъем следует принимать независимо от величины пролета равным прогибу от суммарной нормативной нагрузки плюс 1/200 пролета.

Строительный подъем обеспечивается путем устройства перегиба в монтажных узлах (рис.9.7). Системы решеток ферм и их характеристика. Решетка ферм работает на поперечную силу, выполняя функции стенки сплошной балки. От системы решетки зависит вес фермы, трудоемкость ее изготовления, внешн ий вид. Поскольку нагрузка на ферму передается в узлах, то решетка должна соответствовать схеме приложения нагрузки. Треугольная система решетки. В фермах трапецеидального очертания или с параллельными поясами рациональной является треугольная система решетки (см. рис.9.6,а), дающая наименьшую суммарную длину решетки и наименьшее число узлов при кратчайшем пути усилия от места приложения нагрузки до опоры. В фермах, поддерживающих прогоны кровли или балки настила, к треугольной решетке часто добавляют дополнительные стойки (рис.9.6,б), а иногда и подвески, позволяющие уменьшить расстояние между узлами фермы. Дополнительные стойки уменьшают также расчетную длину сжатого пояса. Работают дополнительные стойки только на местную нагрузку и не участвуют в передаче на опору поперечной силы.


Рис. 9.7. Схемы строительного подъема при одном (а) и нескольких (б) укрупнительных стыках

Недостатком треугольной системы - наличие длинных сжатых раскосов (восходящих в фермах с параллельными поясами и нисходящих в треугольных фермах).

Раскосная система решеток, применяется при малой высоте ферм, а также тогда, когда по стойкам передаются большие усилия (при большой узловой нагрузке).

Раскосная решетка более трудоемка, чем треугольная, требует большого расхода металла, так как при равном числе панелей в ферме общая длина раскосной решетки больше, и в ней больше узлов. Путь усилия от узла до опоры в раскосной решетке длиннее; он идет через все стержни решетки и узлы.

Специальные системы решеток, применяют при большой высоте ферм (примерно 4 - 5м). Чтобы уменьшить размер панели, сохранив нормальный угол наклона раскосов, применяют шпренгельную решетку (см. рис.9.6,д). Устройство шпренгельной решетки более трудоемко и требует дополнительного расхода металла; однако такая решетка позволяет получить рациональное расстояние между элементами поперечной конструкции при рациональном угле наклона раскосов и уменьшить расчетную длину сжатых стержней.

Шпренгельная решетка применяется при крутых кровлях и сравнительно больших пролетах (l = 20 - 24м) для треугольной фермы (см.рис.9.5,е).

В фермах, работающих на двустороннюю нагрузку устраивают крестовую решетку (см.рис.9.6,е). К таким фермам относятся горизонтальные связевые фермы покрытий производственных зданий, мостов и других конструкций, вертикальные фермы башен, мачт и высоких зданий.

Ромбическая и полу раскосная решетки (см.рис.9.6,и,к) благодаря двум системам раскосов обладают большой жесткостью; эти системы применяются в мостах, башнях, мачтах, связях для уменьшения расчетной длины стержней и особенно рациональны при работе конструкций на большие поперечные силы.

Обеспечение устойчивости ферм. Плоская ферма неустойчива из своей плоскости, поэтому ее необходимо присоединить к более жесткой конструкции или соединить связями с другой фермой, в результате чего образуется устойчивый пространственный брус (рис.9.8,а).


Рис. 9.8. Завязка ферм в пространственные системы: 1 - диафрагма

Поскольку этот пространственный брус в поперечном сечении замкнут, он обладает большой жесткостью при кручении и изгибе в поперечном направлении, поэтому потеря его общей устойчивости невозможна. Конструкции мостов, кранов, башен, мачт и т.п. представляют собой также пространственные брусья, состоящие из ферм (рис.9.8,б).

В покрытиях зданий из-за большого числа поставленных рядом плоских стропильных ферм решение усложняется, поэтому фермы, связанные между собой только прогонами могут потерять устойчивость.

Их устойчивость обеспечивается тем, что две соседние фермы скрепляются связями в плоскости верхнего и нижнего пояса и вертикальными поперечными связями (рис.9.9, б). К этим жестким блокам другие фермы прикрепляются горизонтальными элементами, препятствующими горизонтальному перемещению поясов ферм и обеспечивающими их устойчивость (прогонами и распорками, расположенными в узлах ферм). Чтобы прогон мог закрепить узел фермы в горизонтальном направлении, он сам должен быть прикреплен к неподвижной точке - узлу горизонтальных связей.


Рис. 9.9. Связи обеспечивающие устойчивость стропильных ферм: 1 - прогоны; 2 - фермы; 3 - горизонтальные связи; 4 - вертикальные связи; 5 - пространственный блок

Типы сечений стержней ферм

Наиболее распространенные типы сечений элементов легких ферм, показаны на рис.9.10.

По расходу стали наиболее эффективным является трубчатое сечение (рис.9.10,а). Труба обладает хорошей обтекаемостью, поэтому ветровое давление меньше, что важно для высоких сооружений (башен, мачт, кранов). На трубах мало задерживается иней и влага, поэтому они стойки к коррозии; их легко очищать и окрашивать. Это повышает долговечность трубчатых конструкций.

Для предотвращения коррозии внутренних плоскостей трубчатые элементы следует герметизировать. Однако определенные конструктивные трудности сопряжения трубчатых элементов и высокая стоимость труб ограничивают их применение.


Рис. 9.10. Типы сечений стержней легких ферм

Прямоугольные гнуто замкнутые сечения (рис.9.10,б) обладают почти теми же преимуществами, что и трубчатые, позволяют упростить узлы сопряжения элементов и нашли широкое применение. Однако, фермы из гнуто замкнутых профилей с бесфасоночными узлами требуют высокой точности изготовления.

Технологические трудности не позволяют изготавливать гнутые профили толщи ной более 10-12 мм. Это ограничивает возможность их использования. Кроме того, большие пластические деформации в углах гиба снижают хрупкую прочность стали.

Часто сечения элементов ферм принимаются из разного вида профилей: пояса из двутавров, решетка из гнутозамкнутых профилей или пояса из тавров, решетка из парных или одиночных уголков. Такое решение оказывается более рациональным.

В пространственных фермах (башнях, мачтах, стрелах кранов и т.п.), где пояс является общим для двух ферм, его сечение должно обеспечивать удобное сопряжение элементов в разных плоскостях. Этому требованию лучше всего отвечает трубчатое сечение.

В четырехгранных фермах при небольших усилиях, простейшим типом сечения пояса является одиночный уголок или крестовое сечение из двух уголков. При больших усилиях применяются также двутавры.

Сжатые элементы ферм следует проектировать равноустойчивыми в двух взаимно перпендикулярных направлениях.

В каждом конкретном случае выбор типа сечения элементов ферм определяется условиями работы конструкции (степень агрессивности среды, характер и место приложения нагрузок и т.д.), возможностью изготовления, наличием сортимента и экономическими соображениями.

Стержни тяжелых ферм отличаются от легких более мощными и развитыми сечениями, составленными из нескольких элементов. Сечения таких стержней обычно проектируют двухстенчатыми (рис.9.11), а узловые сопряжения выполняются с помощью фасонок, расположенных в двух плоскостях. Стержни тяжелых ферм (раскосы, стойки и пояса) имеют разные сечения, но для удобства сопряжения в узлах ши рина, элементов “в” должна быть одинаковой.

Для поясов ферм желательно применять сечения имеющие две оси симметрии, что облегчает стык в узле двух сечений соседних панелей разной площади и не создает дополнительного момента вследствие несовпадения центров тяжести этих сечений.

Тяжелые фермы, работающие на динамические нагрузки (железнодорожные мосты, краны и т.п.), иногда еще проектируют клепанными, но в основном, как правило, проектируют из сварных стрежней с монтажными узлами на высокопрочных болтах. Применяются следующие типы сечений стержней тяжелых стальных ферм:

Н-образное (рис.9.11,б) - два вертикальных листа, связаны горизонтальным листом, а также клепанные из четырех не равнополочных уголков, связанных горизонтальным листом (рис.9.11,в). Развитие таких сечений в смежных панелях производят креплением дополнительных вертикальных листов (рис.9.11,г). Такие сечения малотрудоемкие. Если конструкция не защищена от попадания атмосферных осадков, то в горизонтальных элементах необходимо оставлять отверстия для стока воды диаметром 50 мм. Н-образные сечения применяют для поясов и раскосов.

Швеллерное сечение состоит из двух швеллеров, поставленных полками внутрь (рис.9.11,д); используются как прокатные, так и составные швеллеры. Такое сечение целесообразно для сжатых элементов, особенно при большой их длине. Недостатком швеллерного сечения является наличие двух ветвей, которые приходится соединять планками или решетками (аналогично центрально сжатым колоннам). Коробчатое сечение состоит из двух вертикальных элементов, соединенных горизонтальным листом сверху (рис.9.11,е,^).


Рис.9.11. Типы сечений стержней тяжелых ферм

Применяется в основном для верхних поясов тяжелых мостовых ферм. Жесткость сечения повышается, если снизу вертикальные листы соединить решеткой (рис.9.11,ж) или перфорированным листом.

Одностенчатое двутавровое сечение состоит из сварного или широкополочного прокатного двутавра, поставленного вертикально (рис.9.11,и).

Трубчатые стержни применяются в тяжелых сварных фермах, имеют те же преимущества, что и в легких фермах.

Замкнутое коробчатое сечение (рис.9.11,к,л,м) обладает повышенной изгибной и крутильной жесткостью, поэтому применяют его для длинных сжатых элементов тяжелых ферм. Сечение может быть выполнено как из гнутых элементов, так и сварных, составленных из четырех листов.

Подбор сечений элементов ферм

В фермах из прокатных и гнутых профилей для удобства комплектования металла принимают не более 5-6 калибров профилей.

Из условия обеспечения качества сварки и повышения коррозионной стойкости толщину профилей (труб, гнутых сечений) не следует принимать менее 3 мм, а для уголков - менее 4 мм. Для предотвращения повреждения стержней при транспортировке и монтаже не следует применять профили менее 50 мм.

Профильный прокат поставляется длиной до 12 м, поэтому при изготовлении ферм пролетом 24 м (включительно) элементы пояса принимают постоянного сечения.

Для снижения расхода стали, целесообразно, особенно при больших усилиях и нагрузках, элементы ферм (пояса, опорные раскосы) проектировать из стали повышенной прочности, а остальные элементы - из обычной стали.

Выбор стали для ферм производится в соответствии с нормами. Так как стержни ферм работают в относительно благоприятных условиях (одноосное напряженное состояние, незначительная концентрация напряжений и т.п.), то для них применяют стали полуспокойной выплавки. Фасонки ферм работают в сложных условиях (плоское поле растягивающих напряжений, наличие сварочных напряжений, концентрация напряжений вблизи швов), что повышает опасность хрупкого разрушения, поэтому требуется более качественная сталь - -спокойная.

Подбор сечений элементов ферм удобно оформлять в табличной форме.

Фермы из труб

В трубчатых фермах рациональны безфасоночные узлы с непосредственным примыканием стержней решетки к поясам (рис.9.22,а). Узловые сопряжения должны обеспечивать герметизацию внутренней полости фермы, чтобы предотвратить там коррозию.

Стержни также центрируются по геометрическим осям, но допускается и эксцентриситет не более одной четверти диаметра поясной трубы, если она используется при неполной несущей способности. Расчет такового узлового сопряжения довольно сложен и относится к области расчета пересекающихся цилиндрических оболочек. Прочность шва, прикрепляющего трубчатый стержень решетки, можно проверить в запас прочности по формуле

N/ ip,85k f l w)<(R w e)minr c (9.14)

где 0,85 - коэффициент условий работы шва, учитывающий неравномерность распределения напряжения по длине шва; l w - длина шва, определяемая по формуле

l w = 0.5 n d £ [ 1.5(1 + cosec a ) - .^cosec a ]

Значение коэффициента ^, зависящего от соотношения диаметра труб приведены в табл.9.3.

При недостаточной толщине пояса его можно усилить (рис.9.22,а). Накладки вырезают из труб того же диаметра, что и пояс или изгибают из листа толщиной не менее одной и не более двух толщин стенки поясной трубы При передаче на пояс фермы сосредоточенных нагрузок (от веса кровли, подвесного транспорта и т.п.) необходимо предусмотреть детали для приложения этих нагрузок симметрично относительно осей плоскости фермы вдоль боковых участков стенки поясной трубы.